
C++ Design and Best Practices (3 days)

© Olsen Software Limited

C++ Design and Best Practices (3 days)

Course overview

C++ is an exquisitely rich language, packed with fascinating language features and extensive

library capabilities. Learning the syntax and STL nuances is a task in itself.

This course goes beyond the syntax and library to focus on C++ design principles and best

practices. The course describes how to design C++ systems so that they are modular,

maintainable, extensible, and pluggable. We take a detailed look at the SOLID principles and

see how to apply them using modern C++ techniques. We also lift the lid on many design

patterns, implementation patterns and C++ idioms and see how they remain relevant in C++

today.

What you'll learn

• Understanding the SOLID principles and how to apply them

• How to design for modularity, maintainability, extensibility, and pluggability

• How to design object relationships and class relationships effectively

• How to make use of static typing via templates and concepts

• How to apply design patterns using modern C++ techniques

• C++ coding best practices

Prerequisites

• Solid programming experience in C++

Course details

• Getting Started: The Importance of Software Design; The Art of Software Design; OO

Modelling

• Designing for Change: The Single Responsibility Principle (SRP); SRP Example; The DRY

Principle

• Segregating Interfaces: Interfaces in C++; The Interface Segregation Principle (ISP);

Applying the ISP to Template Types

• Designing for Extensibility: The Open-Closed Principle (OCP); The OCP and Inheritance;

The OCP and Template Specialization

• Designing Object Relationships: Setting the Scene; Association; Composition; Using

Smart Pointers Appropriately

• Managing Resources with RAII: Overview of RAII; Real-World RAII Examples; Managing

Dynamic Objects with RAII

• Designing for Consistency [The Principle of Least Surprise]: The Liskov Substitution

Principle (LSP); The LSP and Expectation Management; Covariance and Contravariance;

The LSP and Static Typing

C++ Design and Best Practices (3 days)

© Olsen Software Limited

• Designing for Pluggability: Defining a Pluggable Hierarchy; Managing Dependencies;

Organizing Projects and Libraries

• Introduction to Design Patterns: Essential Concepts; Design Pattern Classification; Anti-

Patterns; Design Heuristics

• Creational Design Patterns: Factory Method Pattern; Abstract Factory Pattern;

Prototype Pattern; Builder Pattern

• Structural Design Patterns: Composite Pattern; Decorator Pattern; Static Polymorphism

via Templates; Object Adapter / Class Adapter Patterns; Bridge Pattern

• Behavioural Design Patterns: State Pattern; Command Pattern; Strategy Pattern;

Visitor Pattern; Implementing the Visitor Pattern via std::variant

