C++ Design and Best Practices (3 days)

L +44 7989 401397
SoF’ruJore M info@olsensoft.com

Course overview

C++ is an exquisitely rich language, packed with fascinating language features and extensive
library capabilities. Learning the syntax and STL nuances is a task in itself.

This course goes beyond the syntax and library to focus on C++ design principles and best
practices. The course describes how to design C++ systems so that they are modular,
maintainable, extensible, and pluggable. We take a detailed look at the SOLID principles and
see how to apply them using modern C++ techniques. We also lift the lid on many design
patterns, implementation patterns and C++ idioms and see how they remain relevant in C++

today.

What you'll learn

Understanding the SOLID principles and how to apply them

How to design for modularity, maintainability, extensibility, and pluggability
How to design object relationships and class relationships effectively

How to make use of static typing via templates and concepts

How to apply design patterns using modern C++ techniques

C++ coding best practices

Prerequisites

Solid programming experience in C++

Course details

Getting Started: The Importance of Software Design; The Art of Software Design; OO
Modelling

Designing for Change: The Single Responsibility Principle (SRP); SRP Example; The DRY
Principle

Segregating Interfaces: Interfaces in C++; The Interface Segregation Principle (ISP);
Applying the ISP to Template Types

Designing for Extensibility: The Open-Closed Principle (OCP); The OCP and Inheritance;
The OCP and Template Specialization

Designing Object Relationships: Setting the Scene; Association; Composition; Using
Smart Pointers Appropriately

Managing Resources with RAIL: Overview of RAII; Real-World RAII Examples; Managing
Dynamic Objects with RAII

Designing for Consistency [The Principle of Least Surprise]: The Liskov Substitution
Principle (LSP); The LSP and Expectation Management; Covariance and Contravariance;
The LSP and Static Typing

© Olsen Software Limited



C++ Design and Best Practices (3 days)

Designing for Pluggability: Defining a Pluggable Hierarchy; Managing Dependencies;
Organizing Projects and Libraries

Introduction to Design Patterns: Essential Concepts; Design Pattern Classification; Anti-
Patterns; Design Heuristics

Creational Design Patterns: Factory Method Pattern; Abstract Factory Pattern;
Prototype Pattern; Builder Pattern

Structural Design Patterns: Composite Pattern; Decorator Pattern; Static Polymorphism
via Templates; Object Adapter / Class Adapter Patterns; Bridge Pattern

Behavioural Design Patterns: State Pattern; Command Pattern; Strategy Pattern;
Visitor Pattern; Implementing the Visitor Pattern via std: :variant

© Olsen Software Limited



